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MANIFOLDS WITH ALMOST EQUAL DIAMETER
AND INJECTIVITY RADIUS

0OGUZ DURUMERIC

1. Introduction

In this paper, we will give some constraints on the topology of compact,
connected Riemannian manifolds whose injectivity radii and diameters are
close to each other, in terms of their sectional curvature. For notations and
definitions, we refer to §3, Besse [3], Cheeger & Ebin [6], and Gromoll,
Klingenberg & Meyer [11].

The case of the spherical cut locus of a point in a compact Riemannian
manifold and also the stronger case of the equality of the diameter and
injectivity radius have been studied by various authors. Let (1.1) represent “M
has the integral cohomology ring of one of compact, irreducible symmetric
spaces of rank 1” and (1.2) represent “M” has the same cohomology groups as
that of RP” and M" is homeomorphic to 57 ”.

Warner [22], has shown that if 3p € M, a compact, simply connected
Riemannian manifold, for which each point of the spherical conjugate locus in
TM, is regular, then that has the same multiplicity as conjugate points which
are > 1, and either M is homeomorphic to a sphere or (1.1) holds.

Theorem (Nakagawa & Shiohama [15], [16]). Let M be a compact, con-
nected Riemannian manifold with K ,; < 1, such that Ap € M with spherical cut
locus, i.e., i, = d, = I. Then the following hold. | > a. If | = Lu, then M" is
isometric to RP" with K,, = 1. If 37 <1 < 7, then (1.2) holds. If m (M) = 1,
then | > @. If the cut locus of p is not contained in the first conjugate locus Q , of
D, then the tangential cut locus of p is disjoint from the first tangential conjugate
locus of p, and hence (1.2) holds. Furthermore, if we also assume that | =
7/ yMax(K,, ), then every geodesic segment starting from p with length 21 is a
geodesic loop at p, and for any q € Q,, the multiplicity of p and q as a conjugate
pair is constant A, where A = 0,1, 3, 7 or n — 1. If m(M) # 1, then (1.2) and
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A=0 hold. If m(M) =1, then either (1.1) holds for A =1, 3, 7, or M is
isometric to a sphere of constant sectional curvature Max(K,,) forA = n — 1.

In Besse [3, p. 137], it is shown that a point p € M, where M is C*®, has a
spherical cut locus if and only if M is a pointed Blaschke manifold at p. There
is an extensive theory for Blaschke manifolds {3]; especially, the Bott-
Samelson Theorem ([3, Chapter 7], [4], [17]) states that they satisfy (1.1), (1.2),
or more.

Berger [1, p. 236], has shown that if 3 a Blaschke Riemannian structure on
S7", then this Riemannian structure is isometric to the standard one on S”, up
to a multiplicative factor. Also the analogue is true for RP".

Conjecture ( Blaschke). Any Blaschke manifold M" (i.e., i), = d,; by Besse
[3, p. 138)]) is isometric to one of the following: S”, RP?, CP", HP", CaP?
with their standard metrics, up to a constant factor (see {3]).

Recently, Gluck, Warner & Yang [9] have shown that for dim M” = n < 9,
Blaschke manifolds have the correct homeomorphism types.

The theorems above show that the condition i, = d,, for some p € M is a
very rigid restriction. A very natural question to consider is: If we allow some
flexibility in this condition, such as “i » is close to d p” in some sense, then what
can be said about M? This cannot be done arbitrarily (see §8, Example 2).
Furthermore, the known theorems above for the equality case do not seem to
generalize in this direction, because of the nature of their proofs.

The problem of finding quantitative topological restrictions on even dimen-
sional manifolds with 1 < K,, < 4 + ¢, for some ¢ > 0, makes this situation of
i, being close to d,, interesting. Grove & Shiohama [12] have shown that if
also d,, > 57 then M is homeomorphic to a sphere. Gromoll & Grove [10]
extended this result: if also d,, = 3, then either M is homeomorphic to S” or
M is isometric to a symmetric space of rank 1. By Klingenberg’s Lemma ([6,
pp- 96, 98], {11, p. 277D iy, > 7/ V4 + ¢. The case of w1/ V4 + ¢ < i, < dy
< 47 seems to be resolved recently by Berger [2]: “I38 = 8(n) € R, 0 <8 <
1/4, such that any compact Riemannian manifold M", with n even, m (M) = 1,
and & < K, < 1, is necessarily homeomorphic to S” or diffeomorphic to a
symmetric space of rank 1.”

The primary goal of this paper is to construct some universal constants such
that if i, or i,, is close to d, or d, in terms of these constants, then there will
be some topological constraints on such compact Riemannian manifolds M.
These universal constants depend only on the lower bound of the sectional
curvature K, of M, and sometimes on the dimension.

In §2, we state the main results and some theorems which are used as main
tools. The basic notation and definitions are given in §3. Theorems 1-5 are
proved in §§4~7. §8 contains some examples,
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The results in this paper had also appeared in the dissertation of the author
[7]. The author wishes to thank D. Gromoll for his guidance during the
research and completion of this work; and J. Cheeger for encouraging and
helpful discussions. Theorem 5 was known to J. Cheeger, independently; and
the main tool in its proof is Lemma 11, and was brought to the attention of the
author by J. Cheeger and D. Gromoll.

2. The main results and tools

In the rest of this paper, M" denotes a compact, connected, smooth
Riemannian manifold with no boundary, and with dimension n > 2. In
di - Ky > C, Cis always taken to be negative or zero and there is no loss of
generality in doing so, since if K,, > C’ > 0, then obviously K,, > 0. How-
ever, it follows from the proofs of the theorems that if i2, - K,, > C’ > 0, then
the §’s can be made bigger for positive C’.

Theorem 1. VC € R, 36,(C) > 0, such that for any compact Riemannian
manifold M", if di;- K, > C and 3p € M with i,/d,> 1 — 8§,(C), then
(M, py=1orZ,.

Theorem 2. VC € R, 36,(C) > 0, such that for any compact Riemannian
manifold M", if d, - K, > C, and Ap € M with iy/d,>1—28,(C) and
m (M, p) = Z,, then:

(i) M" is oriented if and only if n is odd, and

(i) Vn > 2, H¥(M",Z7) = H*(RP",7Z) induced by a map of local degree +1,
from RP" onto M™, furthermore, M™ has the homotopy type of RP".

Theorem 3. VC € R, 36,(C) > 0, such that for any compact Riemannian
manifold M", if dy;- Ky > C, and Ap € M with iy/d, > 1 — 8,(C) and
expp|de(O, TM,) is of maximal rank, then m(M, p) = Z,, and M" is homeo-
morphic to S".

Theorem 4. Let o, = arccos(—1/k) for k> 1. VC € R, Va € (0, 7),
38,(a, C) > 0, such that for any compact Riemannian manifold M", if d3, - K,
> C, and Ap € M with iy/d, > 1 — 8,(0,,C) and cxpplﬁdp((), ™,) is of
maximal rank, then:

(i) C,= V1 U V, U V;, where V, are disjoint smooth submanifolds of codi-
mension i, open in their dimensions;,

(i) if n = 2 or o4 is replaced by o5 in the hypothesis, then V3 = @; and,

(iii) if o, is replaced by o, in the hypothesis, then V; = V, = &, and hence,
C, = V) is a compact, smooth n — 1 dimensional submanifold of M", without
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boundary. Hence M" is homeomorphic to a nonsimply connected pointed Blaschke
manifold.

Theorem 5. VC € R, Vn > 2, 385(n C) > 0, such that for any compact
Riemannian manifold M”", if d}-K, > C and Ip € M with in/d, >
1 - 8(n,C), then d,, > w/zw? where K = Max(K,,). Obviously, if K <0,
thenVp € M, iy /d, <1 — 8(n,C).

Remark. The &’s of Theorems 1-5 are explicitly constructed, their ex-
istences are not ideal. The proof of the following theorem will appear elsewhere,
since its proof is different in nature. Although it seems to generalize Theorem
2, the § exists ideally.

Theorem. VC > 0, Vn > 2, 38(C,n)> 0, such that for any compact
Riemannian manifold M", if |d}, - Ky| < C, m(M)=17,, and i,/d,\ >
1 — 8(C, n), then, M" is homeomorphic to RP".

The following results will be used in proving Theorems 1-5. Toponogov’s
Theorem is our main tool.

Theorem (Sugahara [19, Theorem B]). For any compact Riemannian mani-
fold M", if there exists a point p in M such that the first tangential conjugate
locus of p is disjoint from the tangential cut locus of p, and the number of the
minimal geodesics from p to any point on its cut locus is 2, then m(M) = Z,, and
M*" is homeomorphic to S™.

Theorem (Weinstein [3, pp. 137, 231]; [22]). If M" is of the form M" = D"
U , E, where D" is the n-dimensional closed ball, E is a C* closed k-disc bundle
over an n — k dimensional compact C* manifold, with 3E diffeomorphic to $" ™!,
and a: D" — JE an attaching diffeomorphism, then there exists a Riemannian
metric on M, such that M becomes a pointed Blaschke manifold at p, which is the
center of D".

Theorem (Toponogov [20], [21], [6, pp. 42-49], [11, pp. 184 + |). (The
following form is as it appears in [6].) Let M™ be a complete Riemannian manifold
withK,, = C.

(2) Let (1, Yy, v3) determine a geodesic triangle in M; and with indices mod 3,
a; be ®(—v/ 1(l;11), ¥/+2(0). Suppose v, v; are minimal, and if C > 0,
suppose [(v,) < 7/ VC. Then in M., there exists a geodesic triangle (¥, ¥», ¥3)
such that I(v,) = I(¥;) and & < a;; &, < a,. Except in the case C > 0 and
(yv)==/yC for some i, the triangle in M_ is uniquely determined (up to
congruencies of M_.).

(b) Let v,, v, be geodesic segments in M such that yl(ll) = v,(0) and

= ®(=7(]), v;(0). We call such a configuration a hinge L and denote it
(71> Y25 @). Let v, be minimal, and if C > 0, I(y,) < 7/ VC. Let Y1, ¥» © M be
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such that ¥,(l}) = ¥,0), I(v,) = I(¥,) = [; and * (=¥(})), ¥:(0)) = a. Then
d i (710), v2(12)) < dyy (71(0), %2(15)).

3. Basic notation and definitions

For the basic notions of manifolds and Riemannian geometry, we refer to
Cheeger & Ebin [6], Gromoll, Klingenberg & Meyer [11}, and Kobayashi &
Nomizu {13]; and for facts about Blaschke manifolds, refer to Besse [3]. Our
notation and definitions are the same as in [6], and for Blaschke manifolds as
in [3]. In the following, we give the most frequently used or exceptional ones.

In this text, M” always denotes a compact, smooth, connected, n-dimen-
sional Riemannian manifold, without boundary; and TM, UM are its tangent
and unit sphere bundles, with respect to the Riemannian metric ( , ) ,onTM,,
p € M. d,(-,-) is the Riemannian distance function on M. For any metric
space X and x € X, B(x, X)={y € X|dy(x,y)<r} and B(x, X)=
{y € X|dx(x, y) < r}. K), denotes the sectional curvature of the Riemannian
connection on M.

All coordinate systems around any point are taken to be normal. Let
P,q € M be fixed and y be any geodesic from p to ¢. Unless otherwise
specified, the following are assumed. y is parametrized by its arclength, i.e.,
lY'(H)]| =1 Vt; and /(y) denotes its length. If v is said to be a “mg(p, q)”,
then y is a minimal geodesic from p to g, i.e., I(y) = d,( p, g). The set of all
mg( p, q) is denoted by MG( p, ¢) and if furthermore v is the unique minimal
geodesic from p to g, then it is denoted by “umg( p, q)”. Forv,, v, € TM, — 0,
the angle between v, and v,, ¥ (v, v,)1s to be arccos(< U1, vz>p/|[vl|| o, ).

exp,: TM, — M is the exponential map. Vp € M, Vv € UM, the cut value
in the direction of v, ¢,(v), is to be Max{A € R|A > 0, d(p, exp,Av) = A} and
the fundamental region, A, t0 be {v € TM,|d(p, exp, v) = ||v||}. The tangen-
tial cut locus of p, G is defined to be 94 » and the cut locus of p, G, to be
exp, C,. cp(v) depends on p and v continuously, 0 < ¢, (v) < o0, and 04, 4,
int(A4,) are homeomorphic to S "~1 p-dimensional closed disc D" and open
disc D", respectively, since M is compact (see [6, p. 94], [11]).

The injectivity radius at p, i,, is Min{c,(v)[v € UM, } and the injectivity
radius of M, iy, is Min{i,|p € M}. d, = Max{c,(v)lv € UM, } is the dis-
tance to the furthest point from p, and d,, = Max{d,|p € M} is the diameter
of M.

(3.1) Let M be the universal cover of M and p: M — M be the natural
projection map. There is a natural Riemannian structure on M by pulling back
the structure on M by the local homeomorphism p, and with this structure on
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M, p becomes a local isometry and V5 € M, Vi € TMj;, Vi € R, p(exp; 10) =
EXPy 5t 4( D). )

For p € M, the first tangential conjugate locus Q,, of p is defined to be
(exp, )x(t): T(TM,), — TM.p, . is of maximal rank}

{v = TMP
for 0 < ¢t < 1 and not maximal for ¢ = 1.

The first conjugate locus Q,, of p is to be expp(Q )

For any C € R, M_ denotes the simply connected two-dimensional complete
Riemannian manifold of constant sectional curvature C; i.e. a space form [6, p.
40].

For any p € M, p is to have a spherical cut locus if and only if i, = d,. The
link A(p, q) from p to qis to be {v € UM, lexp,(d(p, q) - v) = p}. A compact
Riemannian manifold M is called a pointed Blaschke manifold at p, for some
p €M, if Vg C,, A(p,q) is the intersection of UM, with a subspace of
TM,. M is called a Blaschke manifold if it is a pointed Blaschke manifold at p
for all p in M.

4. A description of the universal cover

Let M be nonsimply connected, M be its Riemannian universal cover, and p:
M — M be the natural Riemannian covering map (see (3.1)). For any given
p € M, fix p, € M with p( p,) = p. For any w; € m(M, p), let p; be w;(py),
where w, is also representing the corresponding deck transformation. There is a
natural bijection between the set of p,’s and m (M, p).

Let U= M — C,. U is homeomorphic to an open n-dimensional disc and
exp,lint(4,): in(4,) = Uisa diffeo~morphism ({6, p. 95], [11]). So, there exists
a unique open connected set U; C M, for each i, such that p, € U, and p|U;:
U — U is a homeomorphism, where w; € m(M, p) is any class. Clearly, if
w # @, then YN U= 2,U, ¢, U =M and w|,: Uy — U, is an isome-
try.

One can easily show that A = {w, € 7, (M), N U, # @} is a set of
generators for 7 (M, p).

Lemma 1. 93U, is connected.

Proof. p is a local isometry, i.e. Vv € TMPO, p(exp,, v) = expp(p*(v)). Let
h(v) = exp, ((p«( Do) " H(v) Vv € TM,. h is a homeomorphism from int(4,,)
onto U, which are both open. Since M is compact, 4, is compact. So, h(A4,) is
closed, hence it is Uy. Therefore, 38U, = U, — U, = h(84,) is connected, since
04, is homeomorphic §"~ ! for compact M (see [6, p. 94)).
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Remark. 00, is not necessarily connected.

The proofs of Lemmas 2 and 3 are elementary, and they are left to the
reader. ‘

Lemma 2. For C < 0. Let two geodesic triangles in M be given with sides of
length A, B, C; and A,, B,, C,, respectively. Let a,, B,, v; be the angles between
the sides of length B,, C;; A;, C;; A,, B,, respectively fori = 1,2.

W) Ifd, = A,, C, = Cyand B; < B, then 3; < §3,.

(i) If A; > A,, B, = B,, C, = C, and B, > 4w then B, < B, (see [11, p.
195)).

Lemma 3. Let x1, X,,- - -, X, be distinct unit vectors in R”, with the standard
inner product, such that ¥ (x;, x;) > arccos(—1/n), i.e. <x,-, xj> < =1/n, for
x; # x;. Then k < n + 1. (Consider I=x,1% = 0)

5. The fundamental group

In this section Theorem 1 will be proved, so its hypothesis is assumed
everywhere in §5.

Proof of Theorem 1. Construction of §;(C): Let C € R be given. Case for
C < 0: Let x €[0,1). Consider two geodesic triangles with sides of length
1+x,1+x,2and1 + x,1 + 3x,2in M. Let 8;(x) and B,(x) be the angles
between the sides of length 1 + x in the first triangle and 1 + x and 1 + 3x in
the second one, respectively. There exists unique x,(C) such that 8,(xy(C))
+28,(x,(C)) = 2o. By Lemma 2(ii), B,(x,(C)) > 27 /3. Let q;, ¢,, g5 be
points in M. such that d(g;,¢;)=1 for 1<i<j<3, and y; be the
umg(q,, g3), With v,(0) = ¢,, v,(1) = g;. Set g, = v(1 + 2x(C)). Let v;, v3
be the umg(q,, g;) and the umg(q;, q;), respectively. Set « =
% (—v¥{(44)s ¥5(q4)), then define §](C) to be Min(x,(C), B(C) (7 — oy (C)))
and 8,(C)=1— (1 + &§(C) L Also, let a(C) be B,(8;(C)) =
Max(7 — &y(C), 8,(xy)). Case for C > 0: Let 8,(C) = 8;(0). A straightfor-
ward calculation shows that 0 < x,(C) < 1/10, for all C € R.

Let M" and p € M" be as in the hypothesis. By multiplying the metric with
1/i,, the hypothesis becomes; (i) K, > Min(C,0), since i, < dy; (i) 1 =i, <
d, <1+ 8/(C).

Let py, p;» Uy, U, be constructed as in §4. Suppose that order(7, (M, p)) > 3.
By the connectedness of M, we can choose U, U, such that U N U, =
bNU, =2, N0 =2, 000 #2 and ()N, + 2. If
U,NU+ @, then set Uy =, and U,=U,. If U N = &, then set
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U = 1(UO) and U; = o, I, ;,)» where o, : M — M is the deck transforma-
tion w1th w; (Po) = Pi,- So, we can choose UO, U,, U, © M such that U, N U =
Blor0gi<j< 2andUoﬂU# @ fori=1,2.

(5.1) If p; # p;, then duy(p;s p;) > 2i, = 2 since the image of any mg( p;. p;)
under p is a geodesic loop at p in M.

(5.2) Let U, U be such that UN U+ & and U, N U = 2. Let r be in
UNU and 6, 6 be mg(p,r) and mg(p,, r), respectively. Then
% (6/(r), 8/(r))y > By(87) > 27m/3 = arccos(— 3). To prove this, let § be any
mg( p;, p;)- Consider a geodesic triangle in M with sides of length /(6;), /(6,),
and /(6); and P be the angle between the sides of length /(6,) and /(6,). We
have /(6,) < d, <1+ 8{(C) for k =i, j, and /(f) > 2, by (5.1). Consider
another geodesic triangle in M- with sides of length 1 + 8{(C), 1 + 6{(C), and
2; in this triangle, the angle between the sides of length 1 + §;(C) is B,(8;(C)),
by the construction of 8{(C). To compare P and B,(6;(C)), apply Lemma 2
three times, changing one side at a time. Hence P > B,(6{(C)). Apply
Toponogov’s Theorem (§2) to the geodesic triangle in M with the vertices Pis s
r and the sides given by the minimal geodesics 8;, 01, and @ and the first triangle
above, and obtain the % (6/(r), 6/(r)) > P. Hence,

£(6/(r), 6/(r)) = P > B(81(C)) > Pi(x0(C)) > 27/3.
63U, U, U, are distinct, then U, N U N U, = &. The existence of any
point in T, N U N U, would give a contradlctlon with (5.2) and Lemma 3.

Remark. 8Uo is not necessarily connected. If it is connected, then (5.3) is
enough to prove Theorem 1.

Let ¢ € M — U, be any point for some fixed 7, and § be any mg( p;, g), with
6(0) = p; and 8(d( p;, q)) = q. Define ¢, = Max{¢ < d(p;, ¢)|0(¢) € U,}, and
also set r = 6(¢,). Obviously,0 < ¢, < d(p;,,q)andp, # r # gq.

(5.4) 1, = c,(p+(0'(p,))), that is

{r}=0({0,d(p;, 9)]) N 3T, = 6([0, d( p;, 9)]) N 3T

Proof of (5.4). r € dU, € U, = exp, (p«(p;)~'(34,)); see Lemma 1. 3v €
p«(p;)"1(34,), such that exp, v =r. Let v' = v/|jv]l. exp,(z- p4(v") is a
geodesic in M starting from p, so it is a minimal geodesic to any point on its
image for 0 < 7 < ¢,(p«(v")) = ||v], before its cut point. Hence, its lift exp, (1)
to M from p; is a minimal geodesic from p; to any point on its image for
0 < t < |jo|l- Hence, 6(¢) and exp,, 1" are two mg(p,, r), r = 0(z,) = eXp,, U
So, ||v|| = ¢,. Since § is a mg( p,, q), for a fixed 7 with 0 < 7 < d(p,, q), § is the
umg( p;, 6(7)), especially for 7 = ¢, < d( p;, q). Therefore, V¢, (¢) = exp, tv',
and hence, v' =46'(p,). 1, =|lv]| = ¢,(px(v) = c,(px(6'(p;))). Obviously,
8((t,,d(p;, ) N T = &. ¥t €1[0,c,(p+(v)))) , exp, 10 4(v)) € U; s0, 6(2)
= exp, v’ € U, and 6(¢) & 9U; D o0, So the rest of (5.4) follows.
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Lemma 4. Let g € M — T, be any point, and 6 be any mg( p,, q). Let r be
the unique element in 0U, N 0([0, d( p,, g)1). By (5.3), there exists a unique U,
with U, #+ U, such that r € Un U Then:

(1)A {0(¢, + 0 <t < M1n(2xO(C), M(q, r)} c mt(U ), and

(i) if djz(g, r) > 2xg, then{0(t, + 1)2xy < t < Min(3, dM(q M} cU.

Proof of Lemma 4. ())AN U = @ by (5.4). SetZtobe {U,|U, N4+ 2,
0, (U)=Ug, o, €m(M, p)l. A+ 3,502+ &.r€AdCcU,.sU, hence
AU,, € Z such that r € Uk rEUﬂU ﬂUk Since U; # U, by U, & Z;
(5. 3) implies that U, = U,, U, € Z, U] N A+ &. Now suppose that 4 &
int(T, ). Then there exists z‘0 in (0, M1n(2x0, diz(g,r))], such that (¢, + £,)
S aU - Hence, there exists U, such that Uy # U, U, # U; and 0(¢t, + ty) €
Uj0 ﬂ . Let 6,, 6, 6, be any mg(6(z, + to) Pih mg(ﬂ(t + 1), p;,), and
mg( p;, pj ), respectively. Consider the geodesic triangle in M given by the
geodesics 6 from p; to 6(¢, + ,), 8, from 8(z, + ¢,) to p; and 6, from p; to p; .
By a similar argument as in the proof of (5.2), using Lemma 2 three times,
Toponogov’s Theorem and the second triangle in the construction of 8,(C),
we conclude that &(—0'(¢, + t,), 05(0)) > By(x,), since d(p;, (¢, + ty)) <
1 + 3x, d(p; p;,) = 2, and d(p;, 0(z, + 1)) <1 + x,. Similarly,
£(—0/(1, + 16, 6{(0)) > By(xo), and by (5.2), ¥ (6(0), 65(0)) > B,(85(C)) >
B1(xo(C)). Hence

2 (=0, + 1), 65(0)) + 2 (65(0),6;(0)) + #(6;(0), =0z, + 1))
> 2B,(x0) + By(xp) = 2.

This gives a contradiction with the fact that Yo, v,, v; € R® — 0 (hence in R,
Vn e NT), L ¢i<j<3 ® (v, 1) < 27. So Lemma 4(i) holds: 4 C 1nt(U ).

(i) Let t, € (2x0,M1n(2, di(gq,r))] be fixed. Let 6, and 6, be any
mg(6(z, + t,), p; ) and mg(r, p; ), respectively. Let gy, 45, 43, 44, Y15 Y2, and 13
be in M as in the construction of §,(C). Recall that C < 0.d(q;, g4) > 1 + x,,
by Toponogov’s Theorem and the Law of Cosines. Let g5 be the unique point
on v, between ¢; and g,, with d(q;. g5) = dy(r, p; ). g5 exists by the continu-
ity of the distance function, and d(q;,q3) =1 < dg(r, p,) <1+ 8/(C) <
1+ xo(C) < d(qy, q4)- g5 is unique, since every metric ball in M. is strongly
convex. Let vy, be the umg(qgs, ;). If g5 = v,(¢,), then set g5 = v,(f; — t,).
3 <t =ty <1. By strong convexity, d(q;,qs) <1. Suppose that d(p,,
0(ty + t,)) = I(8;) = 1. Consider the geodesic triangle with vertices g,, ¢, and
gs in M, and the geodesic triangle in M given by the minimal geodesics 6,, 6,,
and 6, with vertices 6(¢, + t), r, and p;. By Toponogov’s Theorem and
Lemma 2, #(6/(1,), 6;(0)) > % (—vi(ds), vi(ds)), since d(gy, g5) = dz(r, p;,),
d(gs, gg) = to = djz(r, 0(1, + 1)) and d(g,, gg) < 1 < d(p,,, 6(1, + 15)). By
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(5.2), #(6;(0), —8°(¢,)) > By(87) = e Hence, ©(¥{(45),v4(¢s)) > a; and by
the construction of 8{(C), ¥ (—7v{(44), v5(44)) = a;, a; > 7 — a. This con-
tradicts the Gauss-Bonnet Theorem for a geodesic triangle in M with C < 0.
Hence, d(p;, 0(1, + t,)) <1 = i,; consequently, 8(z, + £3) € U, . t, was fixed,
but arbitrarily. q.e.d.

We had supposed that order(w,( M, p)) > 3 and chosen Up, U;, U, C M such
that YN U= @ for 0<i<j<2and N # @ fori=1,2. We will
complete the proof of Theorem 1 after Lemma 5.

Lemma5. Let F: 0U, — R, be defined by F(q) = d;(q, U,). Then:

(i) There does not exist any q € 0U, such that F(q) = 3x,(C), and

(ii) For any g € Uy N U, € U, F(q) = % — x,(C), where U, i = 0,1,2, are
as supposed to be as above.

Proof of Lemma 5. (i) Suppose that 3g € 9U, such that d (g, U;) = 3x4(C).
Let 8 be any mg( p;, q). Let r be the unique point in 3T, N 6([0, d( p,, 9))),
(5.4). r€ U; so, d(q,r) > 3x,. Vr' €30, 1 <d(r, p;) <1 + xg; hence,
d(q, p;) <1 + 4x,. So,

d(g,r)=4d(q, p;) —d(r,p) <1+4x,—1=4x,,
3x, < d(q,r) <4x, < }.
By Lemma 4(it), ¢ € U for some j,. Hence, ¢ € U; N dl,. This gives a
contradiction with the facts that each U, is open, and U; = U, if and only if
unu+ @.

(ii)) Let ¢ € U, N U, be any element, # be any mg( p;, ¢), and r be the
unique point in 3T; N 8((0, d( py, ¢)]); see (5.4). r # g, by (5.3). Let r € 37,
for some iy, U, +# U,. By Lemma 4, 0(¢, +¢)€in(l;,) for 0 <7<
Min(3, dg(r, )). Suppose that ¢ € in(Tj,), then ¢ € U, N T, N iny(T ) #
& . It follows that U, = U, = U}, which is not the case. So, g is not in in{(¥], ),
and consequently, d;;(r, q) > 1. Finally, d(q,U;)> % — x, by the triangle
inequalities. g.e.d.

Proof of Theorem 1 will be completed as follows. F is continuous by being a
restriction of the distance function. By Lemma 1, F(9U},) is connected and
CREGNT)={0}.2 # FGn T,) <[}~ xp, ) and 3x, & F(3L,),
by Lemma 5. @ # U, N U, € 9U,, fori = 1,2, and 0 < x, < 1,/10. This gives
a contradiction with the existence of distinct U, U;, and U, as above. Hence,
order(m (M, p)) < 2. qed.

We will use the following in the proof of Theorem 2. The proof follows from
the proof of Theorem 1, since Lemma 5(i) and its preceding does not use the
existence of Uj.

(5.5) Proposition. If the hypotheszs of Theorem 1 holds, and
where U, U, are as constructed as in §4, then ¥q € U, d 53(q, U,

ﬂU#@

a
) < 2%9(C).
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6. The nonsimply connected case

This section is devoted to the proof of Theorem 2, so its hypothesis is
assumed everywhere in §6.

Proof of Theorem 2. Construction of 8,(C). Let C € R be given.

Case for C < 0. Let x € [0, %) . Consider two geodesic triangles with sides of
length1,1,1 — 4x; and 1,1, 2 — 4x in M. Let B5(x) and B,(x) be the angles
between the sides of length 1 in the first and second triangles, respectively.
There exists a unique x; € (0, %) such that B;(x,(C)) + B,(x,(C)) = =, by
Lemma 2, and B;, B, being strictly decreasing continuous functions of x. Let
x,(C) = Min(x,(C), x,(C)), where x,(C) is as in Theorem 1. Let gy, ¢,, g3,
Y1» By, and &(C) be as in Theorem 1. Set g, = y;(1 + 2x,(C)), and let
Ys be the umg(q;, ¢1), and a,(C) = ¥(—7((¢;), ¥:i(¢7)). Define 0;(C) =
Min(x,(C), By (7 — @,)), and §,(C) =1 — (1 + §,(C) L.

Case for C > 0. Set 8,(C) = 8,(0).

Let M” and p € M" be as in the hypothesis. By multiplying the metric with
1/i,, the hypothesis becomes: (i) K, > Min(C,0), (i) 1 =iy, <i,<d, <1
+ 85(C), (iii) m(M) = Z,.

Let U= M — C,, and construct U and U; in M, as in §4. We have p, € U,
p(p;)=pfori= () 1, Uyn U, = @ and U, U U, = M. We need Lemmas 6,
¢, and 7 for proving Theorem 2.

Lemma 6. Vw € UM, d, (exp,w, exp, ~w) <1 =1iy.

Proof of Lemma 6. leen any v € UM, ,let g(v) = exp, vand

o )= exp,,o(u ey (pa(0))).
dii(q(v), r(v)) < ¢, (px(v)) =1 < d, — i, < 8(C) < x,(C).
Since x,(C) < x¢(C) and «, is constructed in a similar way to ¢;, with the
hypothesis of Theorem 2, x, can be replaced by x, in the proofs of Lemmas
4(ii) and 5(i), and therefore, in Proposition (5.5). So d 5(r(v), U;) < 2x,(C).
r(v) &€ U, and U, is compact, so 3s(v) € 3T, such that dj(s(v), r(v)) =
d iz (r(v), Uy). Since s(v) is in 3, < exppl((p*(pl))'l(aAp)), VS UMP1 with
s(v) = exp, (V" - ¢,(p4(v)). Obviously, v’ depends on v and the choice of
s(v).
dy (exppo v, €Xp,. v')

< d,g(expp v,r(v)) +dig(r(v), s(v)) + diz(s(v), exp, V')
< §(C) +2x,(C) + 8;(C) < 4x,(C).

Let T be the nontrivial deck transformation on M, ie. p(T(m)) = p(m),
T(m)# m, T*(m)=m V¥m € M, and T is an isometry. d;(m, T(m)) > 2i,,
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=2 Vm & M, since, for any ¢ € MG(m, T(m)), p(y) is a geodesic loop at
p(m). Therefore,
d;,(q(v), T(expp1 v’)) > d,‘}(expp1 v, T(expp1 v’)) - d,‘}(q(v), exp,, v’)
>2—4x,(C) =2 - 4x,(C).

Let o(¢) = exp,, 1v'. Consider the geodesic triangle in M with vertices Do, q(v)
and T(exp, v), and sides given by the minimal geodesics exp, w, 0 <t <1,
T(o(1)), 0 <t <1, and any mg(q(v), T(o(1))). We have dy(q(v), py) =1,
d(q(v), T(o(1)) > 2 — 4x,(C) and dj(po, T(o(1)) = di(T( py), o(1) =
d;(py, 06(1)) = 1. Consider any geodesic triangle in M- with side lengths 1, 1,
and d;;(g(v), T(o(1))), and let P be the angle between the sides of length 1. By
Toponogov’s Theorem, % (v, T4(v)) > P, since T(o(r)) = T(exp, ') =
exp,, ! - T«(v'). On the other hand, by Lemma 2, P> Ba(x,(C)), since
d i (g(v), T(o(1))) > 2 — 4x,(C). Therefore, (v, T4(v") > B,4(x,(C)), and
hence, &(—v, T (v")) < 7 — B,(x,) = B5(x;). Consider the geodesic hinge in
M with vertex p,, the minimal geodesics exp,, — tv and T(exp, ') = T(o(1)),
from p, to exp, — v and T(o(1)) = T(exp,, v), respectively. Also, consider a
geodesic triangle with side lengths 1, 1, 1 — 4x,(C) in M. Apply Toponogov’s
Theorem and Lemma 2 in a similar fashion as above to obtain that
d;,(exppo — v, T(exp,, v)) <1 —4x,(C), by taking a hinge in M. of two
minimal geodesics of length 1, starting from the same point with an angle of
t(—v, T*(U'))~ between them. Let w € UM, be any element. There exists a
unique v € UM, such that p(v) = w. Clgoose v" depending on v as above.
Since p is a local iso~metry, Vm, my, my € M, p(T(m)) = p(m), eXpy,my (P ()
= p(exp,(-)) on TM,,, and d;(my, my) > dp(p(my), p(m,)), we have

dy(exp, w, exp, — w)
< dM(expp —w, p(T(exppl v’))) + dM(p(expp1 v’), exp, w)
< djy(exp,,(pa( o) "(=w)), T(exp, v')) + diz(exp,, v/, exp, (04l 2o) T'w))

= dj;(exp,, = v, T(exp,, v')) + djz(exp,, v/, exp,, v)
<1-4x(C)+4x,(C) < 1 =1i,,.
Therefore, d(exp, w, exp, — w) < 1 and this does not depend on the choice
of v’. w was arbitrary, so it is true for all w in UM,,.

Lemma 6. Yv & UM, ,dg(T(exp, — v),exp, v) <1 =iy <ig.

The proof of this follows from above.

Lemma 7. There exists a continuous function f: RP" — M" such that
fIf YBAp, M)) is a diffeomorphism onto B.(p, M) for some r >0, and
f(B.(a,RP")) = B,(p, M), where {a} = f"(p)andV¥r’ <.
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Proof of Lemma 7. Given any w € UM,, Jumg(exp,w, exp, — w), 6
since, by Lemma 6, d,(exp, w, exp, — w) < i,,. I(6,) = I(6_,,). By symmetry,
0. (t)=26_,(6, —t) and hence, 6,(31(6,))=6_,3(0,)). If w,w €
TRP! with ||w)]| = 47, i = 1,2, then, exp, w; = exp, w, if and only if w; =
+w,, where ¢ € RP" is any fixed point. Let ¢ be an isometry of TR P} onto
T™].

w/Z(O TRP")T" /2(0’ TMp)

exp, h

RP" M”

Loy | R it0
(y)_{gy/uyn((“)’” 1)-1(6,,,,)/(7—2)) ifl

Let w € TRP; such that [|wi| = 7/2. (¢ (W) = O0y/19 0012 Gy /1w
= h(Y(—w)). Since, exp, is one-to-one on the interior of B, ,(0, TRP"), and
by above, there exists a unique well-defined function f: RP” - M" which
makes the above diagram commutative.

(6.1) f is continuous. The continuity of f on exp,(B,(0, TRP}')) is obvious.
Letw, € UM,,n € N,and w, > wyasn — . Let g, = exp, w, and g;, = exp,
— w, ¥n € N. Since §, is the umg(q,, ¢,), 9, = 9o and g, = gg; {6, |n € N}
has a convergent subsequence converging to a mg(q,, q4). There exists only
one such minimal geodesic, namely 0WO, and all 0w" lie in a compact set;
therefore, we conclude that 6, — 6, as geodesics, i.e. if 7, €[0,1] Va € N,
with 7, > tgasn — oo, and if r, = 6, (¢, - w, - (6, )) Vn € N, then lim,,_, 7,
= 1y. Otherwise, if there existed two distmct limit pomts r.rpof {rJl £n<
o}, then by the continuity of the distance function and [(6,) =
d(exp,w, exp, — w), we have that d(ry, q,) = d(r3, 45), d(ry, 45) = d(rg, 45)
and d(ry, q4) + d(ry, g4) = d(4qg, qy) which will lead to two distinct mg(q,, q;),
one passing through 7,, the other one through rj; this would give a contradic-
tion with 0WO being the umg(q,, q;). The continuity of f follows this argument
easily. Also see [7, pp. 44, 45).

Although f is continuous, it may not be smooth. /(8,) <1, and d,,(p,
exp, w) = d(p, exp, — w) = 1, s0 6, never passes through p. Let r € R be
3Min{d, (p,0,(t)w e UM,, 0 <t<I(6,)}. Clearly, 1> 2r > 0. There-
fore, f~'(B.(p, M)) = B,(a,RP™) and on this set f is defined by nonsingular
one-to-one exponential maps; so, it is a diffeomorphism onto B,( p, M). The
rest follows from the construction of f. q.e.d.

By Lemma ¢, Vv € UMPO, dji(exp,, v, T(exp,, — v)) <1 =iz < i5. Let g,
be the umg(exp, v, T(exp, — v)). p(f,) is a geodesic from p(exp, v)=

<yl <
<yl < 7/2.
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exp,(p«(v)) to p(T(exp, — v)) = exp,(—p4(v)), whose length is <1 =i,,.
Therefore p(8,) = 0, Define

exp,, v if0<r<1,
v,(t) = {8,((t-=1)-(1(8,)) (7 -2) ifl<t<m—1,
T(exppo(—v(w— 1)) ifr-1<r<m.

Clearly v,(¢) is a continuous curve from p, to p,. Hence p(y,(¢)) represents the
nontrivial element of 7;( M, p). Obviously, f(exp,(¢(¥~'(p+(v))))) = p(v,(2)).
Hence f ,: m(RP") — 7 (M) is bijective. By Lemma 7, f ,: H, (RP",RP" — a)
— H, (M, M — p) is an isomorphism, i.e. f has local degree +1 with Z-coeffi-
cients.

The rest of the proof follows as in Samelson [17], and Berger [1, pp.
135-141]. Although the results of Samelson are obtained under different
hypothesis, only the existence of a continuous function from RP" to M of local
degree +1 is used, and the rest of the arguments do not use any other
assumption. These proofs are purely algebraic topological.

M" or RP" may not be orientable, so if we use Z,-coefficients, then f* is an
isomorphism from H*(M,Z,) onto H"(RP" Z,) by Poincaré duality and
having field coefficients.

(6.2) f*: H*(M,Z,) —» H*(RP",Z,) is an isomorphism. f* is injective, since
for any 0 # e € H*(M,Z,), 3¢’ € H*(M,Z,) with e U e’ = [M] and f*(e)
U f¥(e) = f*(e U e) = f*(M]) = [RP"] # 0, so f*(e) # 0. Since
f+(m (RP", a)) = (M, p), it follows that f*(H'(M,Z,)) = H'(RP",Z,) =
Z, H*(RP"Z,) is a truncated polynomial ring with one generator, namely
the nontrivial element of H'(RP", Z,). Hence, (6.2) holds.

By Proposition C of Samelson [17], M" is oriented if and only if » is odd.
Whenever # is odd, both M” and RP" are Z-orientable; and f, has local and
global degree +1 with Z-coefficients. Hence, f*: H*(M,Z) > H*(RP",Z) is
still injective, (see Browder [5, p. 8, Theorem 1.2.5]). Also by similar proofs to
Theorems D and E of Samelson [17]; for n is either odd or even, f*:
H*(M,Z) > H*(RP",Z)is an isomorphism.

Again using similar arguments to Samelson’s proofs, a stronger conclusion
can be obtained as follows. There exists a unique function f: §” — M" which
makes the following diagram commutative:

S” Mn
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Since f induces an isomorphism on a, level, it follows that f has local degree
+1. By Browder [5, p. 8, Theorem 1.2.5], f*: H*(M,Z) > H*(S",Z) is
injective, and hence by Whitehead’s Theorem (see Spanier [18]), M is a
homotopy sphere. By Lopez de Medrano [14, p. 43], M" has the homotopy
type of RP" since the Z, action on M, which yields M as a quotient, is a
smooth action. g.e.d.

An elementary calculation shows that §,(0) = (13 — 4/7)/57 = 0.04 and
6,(0) = 0.087.

7. A special case: Tangential cut locus away from tangential conjugate locus

In this section, we prove Theorems 3, 4, and 5. They investigate the case in
which the first tangential conjugate locus is bounded away from the cut locus
in the tangent space of a fixed point.

Lemma 8. (Gromoll, Klingenberg & Meyer [11, pp. 198-199)). Let M be a
complete Riemannian manifold, p € M, and exp,: Bg(0,TM,) = M be of
maximal rank. Given v and w in Bg(0, TMp) such that v # w, and exp, v =
exp, w =ir € M. For t, € [0,1] fixed, let g = exp, 1qv, ¢y [0,1] = M be the
geodesic given by co(t) = exp, 1t from p 1o q, and ¢,: [0,1] = M be the broken
geodesic given by

exp, (2tw) ifo <t
expp((l 2t -1 —t))v) ifi <t

For any homoropy H: [0,1] X [0,1] — M between c, and c|, fixing the end points,
ie. H(i,t) = ¢;(t) Vi € [0,1], for i = 0,1, and H(s,0) = p, H(s,1) =g Vs €
[0,1], then there exists s, € [0,1] so that {(cy) + [(H(sy, 1)) = 2R.

Lemma 9. VC € R, Va € (0, 7), 36 = 8(a, C) > 0 such that for any com-
pact Riemannian manifold M" with K, -d% > C, and if Ap € M with (i)
iy/d,>1— 8(a, C), and (ii) exp,: Edp(O, T™,) = M is of maximal rank,
then, for any q € C, and for any two distinct mg(p,q) v, Y., we have
+(11(9) v3(q)) > a.

Proof of Lemma 9. Construction of 8(a, C): Given C € R, and & € (0, 7).

Case for C < 0. Let x € [0, 00) and consider a geodesic triangle in M with
sides of length x + 4, x + 1, and 1, let B;(x) be the angle between the sides of
length x + 4. Bs(x) is a strictly decreasing continuous function of x, by
Lemma 2. lim__, Bs(x) = 0, and B5(0) = 7. Define 8’(a, C) = B5 '(a), and
8(a,C)=1—-(1+ 8(a, C))" .

Case for C > 0. Define 6(a, C) = 6(a, 0).

o) =

1
2
1.
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As in the proofs of Theorems 1 and 2, by normalizing the metric by i, = 1,
the hypothesis becomes K, > Min(C,0), 1 =iy, < d, <1 + &§(a, C) and the
other conditions remain unchanged. Let v,, ¥, be as in the hypothesis, and

= d(p, q). Define f: [0, [T = R by f(s) = d s (v,(5), ¥2(5)). f is continuous,
f(0)y=f(l)=0and f(s) > 0,for0 < s </ :

(7.1) There exists t, € (0, /) such that f(z,) = 1.

Proof of (71.1). Suppose that f(s) <1 =1i,, Vs € (0, /). For any s € [0, /],
let 6.(¢) be the umg(y;(s), ,(s)). 6.(z) depends on s continuously, i.e.

m,_ 0,() =0, (t) by the uniqueness of 6,(¢) for each s. The proof of thlS is
the same as (6.1) of Lemma 7. By definition d, > [ Let v = /- y{(0), w
¥,(0) and ¢, = 0, for applying Lemma 8. ¢,(#) = p V¢,

exp, 2tw if0 <t
exp,(2 - 2t)v if} <t

o) = {

Obviously, exp,w = exp,v = ¢. Set = [0,1] and define a homotopy #:
IXI—> Mas

P ifs=0,

v,(21t) ifs>0,and 0 <7 < 3s,
H(s,t)=186, f(sl)—liﬁ ifl>s>0,and4s <7< 1— is,

q ifs=1,andz = 3,

(12 = 21)) ifs>0,and1 — 3s << 1.

Continuity of f follows from the continuity of y; and v, and the continuous
dependence of 6,(¢) on s. Clearly, v,(s!) = 6,,( f(s])), and yl(sl) =6,0).1Itis
straightforward to show that H is continuous. H(0, ) = p = ¢,(¢), H(1, t) =
c(t)Vt€ I, and H(s,0) = H(s,1)=p Vs € I. exp, Bd (O T™,) = M is of
maximal rank, hence, 37 > 0 such that exp,: d +.(0, ™ )~ M is of maxi-
mal rank. Therefore, Lemma § is applicable and EIsO el such that

(7.2) I(H(so, 1)) + 1(co) = I(H(sg, 1)) > 2(d, + 7) > 2d,.

H(sg, t) is a union of broken geodesic segments with parametrizations other
than arclength: from p to v,(sy/) along v,; from v,(sy/) to v,(s,/) along 0%,
with opposite orientation and from y;(s,/) to p along v,, with the opposite
orientation. Since v, Y,, and 6, are minimal geodesics between those points,
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I(H(sy,1))
= d(P, Yz(sol)) + d(Yz(S.ol), 71(501)) + d(Yl(Sol)a P)
T3 < d(p,valso) + d(n:s00). q) + d(q. 1 (sy0)) + d(n(s0), p)

=2d(p,q) < 2d, sincey, andy, are mg( p, q).
(7.2) and (7.3) are contradictory; therefore, such an H should not exist, and
finally, (7.1) must hold: there exists 7, € (0, /) such that f(¢,) = 1 = i,,.

1 <ty < | — 31, by the triangle inequalities. Consider the geodesic triangle in
M determined by the vertices y,(¢,), v,(¢;) and ¢, and minimal geodesics v;, v,
and 6, between the appropriate points. §, may not be unique anymore, but
any will work. / — ty<l—3<d,- 3 <3+8(aC). Consider any geo-
desic triangle in M- with 51de lengths 1, / — ¢, and / — #,. By Toponogov’s
Theorem, Lemma 2 and the construction of f;(x), we obtain that
E(H(@13(9) > Bs(l = 1 = 1) > Bs(8"(e,C)) = e

Proof of Theorem 3. Take 8,(C) = 8(2n/3,C). d3, - K,, > C implies that
i%, - K, > Min(C,0). By Lemma 9, for any ¢ in C, and any two distinct
mg(p, q) Y1, Y2 ®(¥(9), ¥3(q)) > 27m/3 = arccos(— ). There are at most
two distinct mg( p, ¢) by Lemma 3. Since ¢ is not conjugate to p along any
mg( p, q), there are at least two such geodesics (for example, see [6, p. 93]). So
the hypothesis of Sugahara’s Theorem B [19, §2] is satisfied, and therefore, M"
is homeomorphic to §” and #,(M) = Z,.

Lemma 10. Let w; € RY, i = 1,---,k < 4, such that ||w,| = 1 and {w,,w,)
< 0,ifi # j. Thenwy — wy,- - -, w,_, — w, are linearly independent.

Proof of this lemma is elementary and left to the reader.

Proof of Theorem 4. We define N,: C, — N'" by Vge C,, N, ,(q) is the
number of distinct mg( p, ¢)’s. Since expple (0, T™,) is of max1ma1 rank, exp,
is still nonsingular on a sufficiently small open nelghborhood of Bd So, q is
not conjugate to p along any minimal geodesw we have 2 < N,(q) < o by [6,
p. 93] [19]. Set ¥, =N, '(i+1). C,=Ux,V,, VNV, = @’ if i #j. Take -
8,(a, C)=8(a, C)of Lemma 9.

Let g € C, be any fixed point, and vy, - -, v, be all of the distinct mg( p, g),
le, N(q)=kand g€V, . »(v/(q), v/(q)) > o, if i # j, by Lemma 9, and
k < 4, by Lemma 3. Clearly, V, = @ if i > 4. If ¢, is replaced by o, or 0,, then
furthermore V;, = @ or V; = V, = &, respectively.

Set I = d(p, q) and let 7 > 0 be such that exp,|B, -, is a local diffeomor-
phism. There exist an open ball U € TM,, and an open set U, © M such that
0eUqelU,pEU,Vi=1,kU201-YO)+UVi+,UNnU =0,
Vi, U, c B, ,,and exp,|U: U; — U, is a diffeomorphism. Let f; := (exp,|U)
U, = Uand F;:= ||f]l: U, = R Vi. Define F;;:= F, — F,and H,,(¢q):= {x €
U,|F,;(x) = 0} only when 1 < i <j < k. F, are smooth functions on U, since
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f, are smooth and 0 ¢ U,. (Grad F;)(¢) = v/(q) by Gauss’ Lemma ([6], [11}) V..
Vi # j, (Grad F;;)(q) = v/(q9) — v/(q) # 0, Le. F; is regular at g. Therefore,
there exists an open neighborhood Uj of ¢ such that U] C U,, and Vi # j, F;; is
regular on Uy. Vi, F(q) =1 H,(q) N U; = {x € Uj|F;(x) = F (q) = 0} is
locally a smooth submanifold of M of codimension 1, it contains ¢, and is open
in its dimension by the Implicit Function Theorem. Furthermore, v/(¢q) — v;(¢)
is orthogonal to T(H,;(q)), which is a hyperplane in TM, for i # j. If we set
w; = Y/(q), then by Lemma 10, {v/(¢) — v(q)li=1,---,k — 1} forms a
linearly independent set. Hence, the set of H,,(g) is transversal at ¢, and
consequently, there exists an open neighborhood Uy’ of ¢ such that U C U]
and H(q) = U/ N Nl H,(q) is an n — k + 1 dimensional submanifold of
M locally, open in its dimension, containing g. Obviously, if » = 2, then k < 3.

(7.4) There exists an open heighborhood U, of g such that U,” < U and
U, N H(q) = U,”” N V,_; € C,. This follows from (7.5) and (7.6) below.

(7.5) There exists an open neighborhood U,” of ¢ such that U;”" < U’ and
U” NH(Q) S U 0V,

Proof of (1.5). Suppose that YU,” open, U N H(q)Z U, N V,_y,
ie, 3g, € (H(q) — Vy_1) N U/, ¥Yn € N, such that g, — ¢ which is in H(q)
NV N g, <€ H(q), so Vi=1,--- k=1, F(q,)=0. Vi=1,---,k,
define 6, ;(¢):= exp,(¢ - f(q,)/F(q,)) for large n (since for sufficiently large
n, g, # p, and Fi(q,) # 0), for 0 < t < F(q,). 0, ; is a geodesic from p to g,,.
For a fixed n, §,, have the same length F(q,) = F,(q,), all are distinct for
large n. Note that it is not necessary that 6, ; are minimal. If 6, ,, i = 1,- -k,
are all of the distinct mg(p, g,), then g, € V,_;, which is not the case we
supposed. So, there exists a minimal geodesic ¢, distinct from all 6, ;, from p to
q,- Since ¢, = ¢, ¥, has a convergent subsequence y, converging to a
mg( p, q), namely v, , for some iy, 1<i, <k. Let g,, also represent the
corresponding subsequence g, . In this case, §,, ; and ¢, are distinct geodesics
from p to g,,, and both sequences converge to v, as geodesics. eXP,|By - isa
local diffeomorphism, so, we conclude that f; (¢,,) = £,(4), ¥,,(0) - d(p. q,,)
- f,,(q) in TM, and £, (q,,) # ¥,,(0) - d(p, q,,), since ¢, and §,, ; are distinct
geodesics from p to g,,, and exp, ¥,,(0) - d(p, 4,,) = ¥,,(d(P; 4,u)) = G, =
exp, f;,(4,), for all m large. This contradicts the fact that exp,|U, is a
diffeomorphism. So, such v,(¢) should not exist, and for large n, g, isin V, _;;
consequently, (7.5) holds.

(7.6) There exists an open neighborhood U,” of ¢ such that U, c U}’ and
U" 0V, <cU” nH(g).
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Proof of (7.6). Suppose that VU,” open, U, NV, ¢ U” N H(q),
ie, 3q9, € (Vo1 — H(g) N U/, Vn € N, such that g, - g which is in H(q)
N Vk NU g, €V v S0, there exists k d1st1nct mg(p, q,), say 0, ,,
1,---,k. By Lemma 9, < (0), 6, j(O)> < — % for i # j. Therefore, the hmlt
set of these geodesics contains at least k dlstmct mg( p, q). They have to be
Y1,* * *» Y- For sufficiently large n, by rearranging i-indices for a fixed », and
by taking convergent subsequences, we may assume that ¢, ; — v,asn — oo, as
geodesics. 8; (0) = v/(0); 6, ,(0) - d(p, ¢,) = ¥/(0) - d(p, q)—f(q) and obvi-
ously f,(g,) — fi(q). For sufficiently large n, 6, ,(0)-d(p,q,) € U.
exp, (0, (0) - d(p, 4,)) = q, = exp, fi(q,). For sufficiently large n, 6, ,(0)-
d(p, q,) = fi(q,); otherwise, this would contradict the fact that exp, is a local
diffeomorphism around f;(g). So, for sufficiently large », and for i = 1,- - -, k,
F(4,) = 18,,(0) - d(p, 4,)ll = d( p, 4,) and hence F,;(g,) = 0 and q, € H(q).
This gives the desired contradiction and hence it proves (7.6).

Finally, (7.4) follows from (7.5) and (7.6).

For the argument above, g was fixed but arbitrarily. For any g € V,_,, there
exists U,” asin (7.4): H(q) N U,” = V,_; N U,””, which is an open piece of
an n — k + 1 dimensional smooth submanifold of M. This shows that ¥, _, is
an n — k + 1 dimensional submanifold of M, which is open in its dimension.
fgeV,_,,ie 3q,€V,_;, VnEN, g, > q as n > oo, then, there are k
distinct mg(p, g,), and the limit set of them contains at least k distinct
geodesics as in the proof of (7.6) or simply by exp, being of maximal rank on
B, ... However, there may be other mg( p, ¢); so, ¢ € V). ,,, m > —1. Hence,
17,.1)— Vl._c U ;>: V;- By Sugahara [19], V] is an open and dense subset of G,.
oV, = V1 — V= V, U V,;. We only have dV, C V;, since ¥, is not necessarily
dense in ¥, U ¥; which may not be connected.

If o, is replaced by o, in the hypothesis, then C, = ¥; by Lemmas 3 and 9.
In this case, G is an n — 1 dimensional compact smooth submanifold of M.
For any arbitrary but fixed g € C,, ¥ is locally given by H(q) N U,” = {x
€ U," |Fj,(x) = 0}, a level set of a smooth regular function around ¢q. F;(x)
is a smooth function on U,”. Therefore, for x € C,, Fi(x) =d(p, x) is a
smooth function on Cp, and hence, cp(-): UMP — R is smooth. For any p,
0 <p<iy V,={exp,vjv € UM, 0 <t <c,(v)— p} is diffeomorphic to
the open n-dimensional disc D" and d¥, is diffeomorphic to dD" = S "~1 Since
exp, is of maximal rank of By ir and C, is a smooth submanifold, locally
around any g € C, for re U” n C = U,” N H(g), for i=12,
(Grad F))(r) depends on r smoothly Hence (Grad Fj;)(r) and
((Grad F,)(r), (Grad F,)(r)) depend on r smoothly. However, (Grad F,)(r)
+ (Grad F,)(r) is not necessarily 0 in 7M,. Hence, M — ¥, is homeomorphic
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(possibly diffeomorphic) to a smooth 1-disc bundle E over ¥; = C,. In fact,
this homeomorphism can be taken to be smooth everywhere on M — ¥, but
except on C,. So, M is homeomorphic to D"yU  E, where a: S""! - 3E is an
attaching diffeomorphism. Finally, Weinstein’s Theorem, §2, is applicable, and

v M is homeomorphic to a nonsimply connected pointed Blaschke manifold, by
Theorem 3 and 8,(c,, C) = §;(C).

Lemma 11 (Cheeger & Gromoll).  For any compact Riemannian manifold
M ifd, < n/2JK for some p € M, where K = Max(K ), and d, = d(p, q)
for some q € C,, then, there are at least n + 1 distinct mg( p,q). For K < 0, we
mean oo instead of K~1/2,

Proof of Lemma 11. Let y;,- -+, v, be all of the distinct mg( p, ). Suppose
that k < n.3v € TM,, such that lv|| = 1 and Vi = 1,-- -,k — 1. (v,¥/(q)) =
0. We may choose w among = v such that <w, y,i(q)) > 0. HenceVi=1,--- k,
<w, y{(q)) > 0. Let 0(¢) =:exp, tw, for ¢ € (—1,1). Vi, construct f; around ¢
as in the proof of Theorem 4.

7.7y Yi=1,--+,k, and for ¢t €[0,1], E(0(2)) = || /;,(0(2))] is strictly in-
creasing at £ = 0. If (w, y/(g)) > 0, then (7.7) is obvious. If (w, v/(g)) =0,
then consider the pull-back metric from M on B:= B_, (0, TM,) by exp,|B
which is nonsingular and hence is a local diffeomorphism by [6, p. 30]. With
this new metric on B, the metric ball of radius d, (< 7/ 2yK) around 0 in ™,
is strictly convex by Whitehead’s Lemma [6, p. 103], [23]; and hence, (7.7) still
holds. For all large n € N, let g, = 8(1/n), and 8, be any mg( p, q,). ¢, = g as
n — oo; therefore, 6, has a convergent subsequence 6, converging to a
mg( p, q), namely v,, for some j, 1 <j < k. Letr,,=¢q, and y,, =46, . For
sufficiently large m, »,(¢):= exp, if,(r,,) is not a mg(p, r,,), since for suffi-
ciently large m,

(s, =|f;(r.)|| = E(6(1/n,,)) > E(6(0)) =d(p.q) =d, > d(p. 1,).

So, we have f.(r,,) = f,(q), ¥,,(0) - {(¥,,,) = f,(q), (1) # ¥,,(0) - I(Y,,) since
v, 1s not a mg(p,r,), and exp,f(r,) = exp,(¥,(0) - I(¥,,)) =1, > q as
m — oo. This gives a contradiction with the fact that exp, is a local diffeomor-
phism around f;(¢). Consequently, k > n + 1. ge.d.

Proof of Theorem 5. Set 85(n,C)= 8(o,,C) of Lemma 9, where o, =
arccos(—1/n). Suppose that d, < 7/2VK. Let g € C, be with d(p, q) = d,,.
By Lemma 11, there should exist at least n + 1 distinct mg( p, ¢). Lemma 9 is
applicable since exp, is of maximal rank on B, ,, x(0, TM,) [6, p. 30]; then by
Lemma 3, there should exist at most n mg( p, ¢). This contradiction leads to
d, > n/2/K. Case for K < 0 follows.
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8. Examples

Example 1. Let M be one of the following with their standard metrics: S”,
RP", CP", HP", and CaP?% igp» = dppr = 37, and if M # RP", then
iy = dy = m. Let g(¢) be a C? 1-parameter family of metrics on a fixed M
such that g(0) is the standard one. Since, the diameter and injectivity radius
depend on the metric continuously [8] and g(0) has positive curvature, there
exists a 6 > 0 such that for all r € (—4,8) and for all p in M,
i,(8(1)/d,(8(1)) > 1 = 8,(0).

Example 2. For any compact Riemannian manifold M”, and any §, > 0,
there exists a Riemannian metric g; on M such that i,(g,)/d,(g;) > 1 — §,
for some p € M. The construction of g;: Let g, be any Riemannian metric on
M, and choose r € R with 0 < r < i,(g,) for any fixed p in M. There exists a
smooth function : M — [0,1], with Supp(y) C B.(p, M; g,) and
Y(B,1-15,)(P, M; go)) = 1. Let d = d(M, g,). Define g = (1 + (2dy/8,7)) -
8- Then, i, (g) > (1 — 38)-r-(2d/8r) and d,(8) < Qdr/§r) + d.
Hence, i,(g,)/d,(8) > 2 — 8,)/Q2 + 8) > 1 - &,

Remark. Example 2 shows that the curvature conditions of Theorems 1-4
cannot be removed. However, they might be replaced by weaker conditions.
lim._, _ 6,(C) = 0; since, 6,(C) is decreasing as C > — o0, §,;(C) > 0, and
the limit can not be positive by above.

Example 3. Consider the lattice L:= Ze, + Ze, in R?, where ¢; = (1,0)
and e, = (,1V3). T?:= R?/L is a flat hexagonal torus. One can show that
ir» =% and d;» = 3712 So, §(0) of Theorems 1-3 cannot be made larger
than1 — 13,

Remark. Since for all p in M, any compact Riemannian manifold, /,, < /,
< d, < d,; all of the Theorems 1-5 are still valid if all of i, and d, are
replaced by i,, and d,,, respectively.
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